

Available online at www.sciencedirect.com

Journal of Photochemistry Photobiology A:Chemistry

Journal of Photochemistry and Photobiology A: Chemistry 162 (2004) 17-22

www.elsevier.com/locate/jphotochem

Diffusion processes involved in the exothermic triplet–triplet energy transfer in *n*-hexane at high pressure: evaluation of diffusion coefficients of benzophenone, triphenylene and naphthalene

Masami Okamoto*

Faculty of Engineering and Design, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Received 14 February 2003; received in revised form 12 May 2003; accepted 4 June 2003

Abstract

By using the exothermic energy transfer previously determined as a function of pressure, the rate constant for diffusion, k_{diff} , was evaluated for benzophenone triplet (³BZP*)/naphthalene (N), triphenylene triplet (³TPH*)/N and triphenylene singlet (¹TPH*)/BZP, and the diffusion coefficients, D_i , for BZP, TPH and N were determined in *n*-hexane at pressures up to 400 MPa by assuming that D_i for the excited states is equal to that for the ground state. The diffusion coefficients evaluated agreed well with the available data at 0.1 MPa. The quenching rate constants, k_q , for ¹TPH*/O₂ and ¹TPH*/CBr₄ were also measured at pressures up to 400 MPa in this work. For these systems, the values of k_{diff} were also evaluated and compared with those calculated by coupling D_i for TPH in this work with that for the quenchers determined by the dynamic fluorescence quenching in the previous works.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Diffusion; Exothermic energy transfer; Benzophenone; Triphenylene; Naphthalene

1. Introduction

The exothermic excitation transfer from the lowest triplet state (T_1) of donor $({}^{3}D^{*})$ to the ground state acceptor (A), which is shown in Eq. (1), has been extensively studied and believed to be diffusion-controlled [1-3]:

$${}^{3}\mathrm{D}^{*} + \mathrm{A} \xrightarrow{\kappa_{\mathrm{q}}} \mathrm{D} + {}^{3}\mathrm{A}^{*} \tag{1}$$

When the quenching of ³D* by A is fully diffusion-controlled, the rate constant for diffusion, k_{diff} , is given by using the diffusion coefficient of ³D*, $D_{\text{D}*}$, and that of A, D_{A} , as follows [4,5]:

$$k_{\rm diff} \,(\times 10^3) = 4\pi r_{\rm D^*A} D_{\rm D^*A} N_{\rm A} \tag{2}$$

where D_{D^*A} is the sum of D_{D^*} and D_A , and r_{D^*A} and N_A are the encounter distance (= $r_{D^*} + r_A$; the sum of the radius of ³D^{*} and A) and Avogadro's number, respectively. However, the quenching rate constant, k_q is not equal to k_{diff} predicted by Eq. (2).

Recently, we examined the quenching of the T_1 states of benzophenone (³BZP^{*}) and triphenylene (³TPH^{*}) by naphthalene (N) and also fluorescence quenching of TPH by BZP as a function of pressure [6]. It was found that these quenching systems examined are not fully but nearly diffusion-controlled, and showed that k_q can be separated into k_{diff} and the bimolecular quenching rate constant, k_{bim} , in the solvent cage [7,8]. More recently, the separation of k_q into k_{diff} and k_{bim} was modified by introducing the radial distribution function at contact with hard spheres and applied successfully to some fluorescence quenching systems [9-15]. The approach was also successfully applied to triplet-triplet annihilation in liquid solution [16]. Once one obtains the accurate k_{diff} , the diffusion coefficient, D_i , for the solute molecule, *i*, in a given solvent may be calculated by Eq. (2) in the following cases: (i) D_i is known for a reference molecule, either the donor or acceptor molecule and/or (ii) k_{diff} is measured for the systems more than three donor/acceptor pairs such as ³BZP*/N, ³TPH*/N and ¹TPH*/BZP in the present work when D_i for the excited state is assumed to be equal to that for the ground state. By the former approach, the relevant diffusion coefficients were successfully evaluated as a function of pressure from the fluorescence quenching of pyrene and 9,10-dimethylanthracence by oxygen and carbon tetrabromide [11,15] using the values of D_i of benzo(a)pyrene as a reference fluorophore in *n*-hexane [17].

In this work, k_{diff} was determined for ³BZP*/N, ³TPH*/N and ¹TPH*/BZP by using the data of k_q reported previously [6] and the diffusion coefficients for BZP, TPH and N were

^{*} Tel.: +81-75-724-7285; fax: +81-75-724-7580.

E-mail address: okamoto@hiei.kit.ac.jp (M. Okamoto).

evaluated as a function of pressure according to Eq. (2). And also, the fluorescence quenching rate constant, k_q , of TPH by oxygen and CBr₄ was measured in order to evaluate k_{diff} in *n*-hexane. The results were compared with k_{diff} obtained from the diffusion coefficient for TPH together with that for the quenchers reported previously [11,15].

2. Experimental

Triphenylene (TPH) (guaranteed grade; Wako Pure Chemicals) was recrystallized from ethanol twice. Carbon tetrabromide (CBr₄) (Wako Pure Chemicals; guaranteed grade) was purified by sublimation twice under reduced pressure. *n*-Hexane of spectroscopic grade (Merck) was used without further purification.

Fluorescence decay curve measurements at high pressure were performed by using a 0.3 ns pulse from a PRA LN103 nitrogen laser for excitation (337.1 nm/less than 5 μ J per pulse by ND filters), which was operated with repetition of 10 Hz. The fluorescence intensities were measured by a Hamamatsu R1635-02 photomultiplier through a Ritsu MC-25NP monochromator and the resulting signal was digitized by using a LeCroy 9362 digitizing oscilloscope. The pulse width measured by using the system was less than 3 ns (HV for PMT = -1000 V). All data were analyzed by using a personal computer, which was interfaced to the digitizer. The details about the associated high pressure techniques have been described elsewhere [18].

The concentration of TPH for the fluorescence lifetime measurements was less than ca. 1×10^{-4} M in order to minimize the reabsorption effects. The sample solution was deoxygenated by bubbling nitrogen gas under nitrogen atmosphere for 20 min. The change in the concentration of carbon tetrabromide by bubbling was corrected by weighing the sample solution. The concentration of dissolved oxygen in *n*-hexane was determined from the solubility data of oxygen [19,20]. The increase in the concentration due to the application of high pressure was corrected by using the compressibility of solvent [21–23].

Temperature was controlled at 25 ± 0.1 °C. Pressure was measured by a Minebea STD-5000 K strain gauge or a calibrated manganin wire.

3. Results and discussion

In this section, the experimental results of the fluorescence quenching of TPH by oxygen and carbon tetrabromide are first shown, and then the separation of k_q into the rate constant of diffusion, k_{diff} , and the bimolecular rate constant in the solvent cage, k_{bim} , is accomplished.

3.1. Fluorescence quenching of TPH by O_2 and CBr_4

Fluorescence quenching was examined in the absence and presence of the quencher (Q: oxygen and CBr_4) in *n*-hexane

Table 1

Values of solvent viscosity, η , τ_f^0 and k_q for ¹TPH*/O₂ and ¹TPH*/CBr₄ in *n*-hexane and at 25 °C

P (MPa)	η (cP)	$ au_{\rm f}^0 \ ({\rm ns})^{\rm a}$	$k_{\rm q} ~(\times 10^{10} {\rm M}^{-1} {\rm s}^{-1})$		
			¹ TPH*/O ₂ ^b	¹ TPH*/CBr ₄ ^c	
0.1	0.294	36.3	3.49 ± 0.18	1.93 ± 0.02	
50	0.472	36.4	2.75 ± 0.14	1.46 ± 0.02	
100	0.650	36.8	2.27 ± 0.12	1.15 ± 0.02	
150	0.849	36.6	1.84 ± 0.10	0.93 ± 0.02	
200	1.063	37.0	1.57 ± 0.08	0.76 ± 0.02	
250	1.310	36.6	1.33 ± 0.07	0.62 ± 0.02	
300	1.610	36.4	1.15 ± 0.06	0.51 ± 0.02	
350	1.948	36.3	0.98 ± 0.05	0.43 ± 0.02	
400	2.368	36.0	0.83 ± 0.05	0.35 ± 0.02	

^a Errors were evaluated to be within 3%.

 b Errors were evaluated from the values of τ_{0} and $\tau.$

 $^{\rm c}$ Errors were evaluated from the standard deviation of the plot of $1/\tau$ against [CBr4].

at 25 °C. The decay curves were analyzed satisfactorily by a single exponential function in all the conditions examined. The values of the lifetime, τ_f^0 , in the absence of the quencher are listed in Table 1. The quenching rate constant, k_q , can be determined by

$$\frac{1}{\tau_{\rm f}} - \frac{1}{\tau_{\rm f}^0} = k_{\rm q}[Q]$$
(3)

where $\tau_{\rm f}$ represents the fluorescence lifetime in the presence of the quencher. For ¹TPH*/O₂, $k_{\rm q}$ was determined from $\tau_{\rm f}^0$ and $\tau_{\rm f}$ in air-saturated *n*-hexane. For ¹TPH*/CBr₄, $k_{\rm q}$ was evaluated from the least-squares plot of 1/ $\tau_{\rm f}$ against the concentration of CBr₄, which is shown in Fig. 1. The values of $k_{\rm q}$ for ¹TPH*/O₂ and ¹TPH*/CBr₄ are listed in Table 1. Fig. 2a shows the pressure dependence of $k_{\rm q}$ for ¹TPH*/O₂ and ¹TPH*/CBr₄, together with that for ³BZP*/N, ³TPH*/N and ¹TPH*/BZP [6]. One can see in Fig. 2a that $k_{\rm q}$ decreases significantly with increasing pressure for all the quenching systems. The apparent activation volume for $k_{\rm q}$, $\Delta V_{\rm app}^{\neq}$, evaluated by Eq. (4), is listed in Table 2:

$$RT\left(\frac{\partial \ln k_{\rm q}}{\partial P}\right)_T = -\Delta V_{\rm app}^{\neq} \tag{4}$$

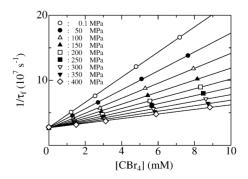


Fig. 1. Plots of $1/\tau_f$ against the concentration of CBr₄, [CBr₄], in *n*-hexane at 25 °C and nine pressures.

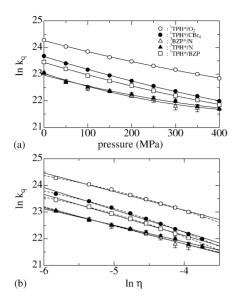


Fig. 2. Plots of $\ln k_q$ against pressure (a) and of $\ln k_q$ against $\ln \eta$ (b) in *n*-hexane at 25 °C. In (a), the solid lines were drawn by assuming that $\ln k_q = AP^2 + BP + C$. In (b), the solid and dotted lines were drawn by assuming that $\ln k_q = A(\ln \eta) + B$ and $\ln k_q = A(\ln \eta)^2 + B(\ln \eta) + C$, respectively.

It is noted in Table 2 that ΔV_q^{\neq} is approximately independent of the quenching systems, but significantly smaller than the activation volume, ΔV_{η}^{\neq} , determined from the pressure dependence of the fluidity, $1/\eta$, where η is the viscosity of the solvent [21–23]. The latter observation was often found for some quenching systems with a nearly diffusion-controlled rate [9–15].

A fractional power dependence of k_q on η , that is, k_q is proportional to $\eta^{-\beta}$, and also was examined for some systems in order to study the contribution of diffusion to the quenching where $0 < \beta \le 1$ [24]. The plots of $\ln k_q$ against $\ln \eta$ are shown in Fig. 2b. The mean values of β determined from the linear plot of $\ln k_q$ against $\ln \eta$ (the solid lines in Fig. 2b) are 0.70 ± 0.03 and 0.83 ± 0.03 for ¹TPH*/O₂ and ¹TPH*/CBr₄, respectively, and 0.68 ± 0.03 , 0.62 ± 0.02 and 0.79 ± 0.03 , for ³BZP*/N, ³TPH*/N and ¹TPH*/BZP, respectively [6]; they indicate the difference between ΔV_q^{\neq} and ΔV_{η}^{\neq} (cm³/mol) since $\Delta V_q^{\neq} = \beta \Delta V_{\eta}^{\neq}$ according to the

Table 2 Values of ΔV_{app}^{\neq} (mol/cm³) for some quenching systems at 0.1 MPa and 25 °C in *n*-hexane^a

¹ TPH*/O ₂ ^b	10.9 ± 0.4
¹ TPH*/CBr ₄ ^b	12.6 ± 0.3
³ BZP*/N [6]	13.4 ± 1.2
³ TPH*/N [6]	10.9 ± 1.2
¹ TPH*/BZP [6]	12.1 ± 0.4

^a ΔV_{app}^{\neq} was evaluated by assuming that $\ln k_q = AP^2 + BP + C$. ΔV_{η}^{\neq} was evaluated to be 23.8 cm³/mol from the pressure dependence of solvent viscosity, η , by assuming that $\ln \eta = AP^3 + BP^2 + CP + D$.

^b From the data in this experiment.

fractional power dependence. Certainly, as seen in Fig. 2b for ${}^{3}BZP^{*}/N$ and ${}^{3}TPH^{*}/N$, the plots are approximately linear, whereas for ${}^{1}TPH^{*}/BZP$, ${}^{1}TPH^{*}/O_{2}$ and ${}^{1}TPH^{*}/CBr_{4}$ with larger k_{q} , they bend significantly downwards (the dotted lines in Fig. 2b). These results of the fractional power dependence are consistent with those observed for the nearly diffusion-controlled quenching previously reported [10–14]. As a result, the fluorescence quenching of TPH by oxygen and CBr₄ in this experimental study and the excitation transfer under consideration may occur kinetically via a similar mechanism.

3.2. Separation of k_q into k_{diff} and k_{bim}

The exothermic excitation transfer from ${}^{3}D^{*}$ to A may occur via encounter complex (DA)^{*} as follows [3,9,25].

$$^{3}D^{*} + A \xrightarrow{k_{diff}} ^{3}(DA)^{*} \xrightarrow{k_{et}} D^{+3}A^{*}$$

Scheme 1.

For the fluorescence quenching of some fluorophores by oxygen and heavy atom quenchers, a mechanism similar to Scheme 1 was used [9–16]. In Scheme 1, the observed quenching rate constant, k_q , is equal to k_{diff} when $k_{et} \gg k_{-diff}$, and $k_q = k_{diff}k_{et}/k_{-diff}$ when $k_{-diff} \gg k_{et}$; for the former limiting case, the energy transfer occurs upon every encounter, whereas for the latter case the efficiency is less than unity.

In general, the diffusion coefficient, D_i^{SE} , by the Stokes–Einstein (SE) equation for the *i* species with a hard sphere radius, r_i , in a continuum medium of the viscosity, η , is given by

$$D_i^{\rm SE} = \frac{k_{\rm B}T}{f_i \pi r_i \eta} \tag{5}$$

where f_i is 4 and 6 for the slip and stick boundary limits, respectively. When r_i for the donor and acceptor molecules is approximately equal, the rate constant for diffusion, k_{diff} , derived from Eqs. (2) and (5) is given by the Debye equation:

$$k_{\rm diff} = \frac{8RT}{\alpha\eta} \tag{6}$$

where α is 2000 and 3000 for slip and stick boundary limits, respectively. In the previous works [9–16], we have shown that f_i (Eq. (5)) and α (Eq. (6)) are not predicted by the SE equation and the Debye equation, respectively, although the $1/\eta$ dependence of k_{diff} holds, and also shown that α in Eq. (6) should be taken as a parameter (α^{ex}) determined experimentally (α in Eq. (6) is replaced by α^{ex}). On the basis of Scheme 1 together with Eq. (6), we can derive the following equation [9]:

$$\frac{\gamma}{k_{\rm q}} = \frac{1}{k_{\rm bim}^0} + \frac{\alpha^{\rm ex}}{8RT} \gamma \eta \tag{7}$$

Table 3	
Values of α^{ex} and k_{bin}^0	$(\times 10^{10} \mathrm{M^{-1} s^{-1}})$ at 0.1 MPa and 25 °C in <i>n</i> -hexane

	³ BZP*/N ^a	³ TPH*/N ^a	¹ TPH*/BZP ^a	¹ TPH*/O ₂	¹ TPH*/CBr ₄
$\frac{\alpha^{\text{ex}}}{k_{\text{bim}}^0}$	$ 3090 \pm 240 \\ 1.1 \pm 0.4 $	$ 2890 \pm 120 \\ 1.1 \pm 0.2 $	$2620 \pm 20 \\ 3.4 \pm 0.3$	945 ± 20 5.5 ± 0.6	$ \begin{array}{r} 2300 \pm 10 \\ 6.3 \pm 0.4 \end{array} $

^a Values of α^{ex} and k_{bim}^0 were recalculated according to Eq. (7) by using the data of Ref. [6].

where

$$k_{\rm bim}^0 = k_{\rm et} \left(\frac{k_{\rm diff}}{k_{\rm -diff}}\right)_0 \tag{8}$$

In Eqs. (7) and (8), γ is the ratio of the radial distribution function at contact of ³D* and A, $g(r_{D^*A})_P$, at *P* (in MPa) to that at 0.1 MPa, $g(r_{D^*A})_P/g(r_{D^*A})_0$, and $(k_{\text{diff}}/k_{-\text{diff}})_0$ is $k_{\text{diff}}/k_{-\text{diff}}$ at 0.1 MPa [9]. Similar equation to Eq. (7) was successfully applied to the fluorescence quenching of some fluorophores by the quenchers including oxygen, CBr₄ and polybromoethanes although the definition of k_{bim}^0 (Eq. (8)) is modified [9].

The plots of $\gamma/k_{\rm q}$ against $\gamma\eta$ for ³BZP*/N, ³TPH*/N and ¹TPH*/BZP, where the values of k_q reported previously are used [6], are shown in Fig. 3, together with those for $^{1}\text{TPH}^{*}/\text{O}_{2}$ and $^{1}\text{TPH}^{*}/\text{CBr}_{4}$ in this experimental work. The plots shown in Fig. 3 are approximately linear with a positive intercept for a given system, see Appendix A, indicating that the quenching competes with diffusion, and also, $k_{\rm bim}^0$ is approximately independent of $\gamma \eta$, that is, pressure. These observations are consistent with those found for the fluorescence quenching systems studied previously [9–16]. The values of α^{ex} and the bimolecular rate constant, k_{bim}^0 , were determined from the least-squares slope and intercept of the plots (Fig. 3), respectively, and are summarized in Table 3.¹ The values of α^{ex} (and $k_{\text{bim}}^0/10^{10} \text{ M}^{-1} \text{ s}^{-1}$) are $940 \pm 20 (5.4 \pm 0.8) [10], 945 \pm 20 (5.5 \pm 0.6) [11]$ and 980 ± 20 (6.9 \pm 1.2) [13] for the fluorescence quenching of benzo(a)pyrene, 9,10-dimethylanthracene and pyrene by oxygen, and $1980 \pm 20 (7.0 \pm 0.5)$ [10], $1820 \pm 30 (5.5 \pm 0.9)$ [11] and 2280 ± 20 (69 ± 96) [14] for that by CBr₄, respectively; they are in good agreement with the present results for ¹TPH*/O₂ and ¹TPH*/CBr₄ although the error of k_{bim}^0 is very large for pyrene/CBr₄.

3.3. Rate constant for diffusion, k_{diff} , and diffusion coefficient, D_i

As mentioned in the previous paragraph, the values of α^{ex} were evaluated, and hence, one may determine the accurate k_{diff} for ³BZP*/N, ³TPH*/N, ¹TPH*/BZP, ¹TPH*/O₂ and

¹TPH*/CBr₄, by using α^{ex} and the solvent viscosity, η , as a function of pressure according to Eq. (6) where α is replaced by α^{ex} . Table 4 shows the values of k_{diff} as a function of pressure for three quenching pairs. The values of the sum of the diffusion coefficients, $D_{D^*} + D_A$, determined according to Eq. (2) by using k_{diff} and $r_{\text{D}^*\text{A}}$ are also included in Table 4. The values of k_{diff} are about twice as large as k_{q} at 0.1 MPa [6], and approach k_q as pressure increases, indicating that the quenching is nearly diffusion-controlled in the lower pressure region. From the values of $D_{D^*} + D_A$ listed in Table 4, the diffusion coefficient, D_i (i = BZP, TPH and N) was calculated by assuming that D_i for the excited states is equal to that of the ground state. Table 5 shows the values of D_i (i = BZP, TPH and N) thus estimated. Previously, we reported the values of D_i for O_2 and CBr_4 by coupling k_{diff} for the fluorescence quenching of benzo(a)pyrene $(BZ(a)PY)/O_2$ and $BZ(a)PY/CBr_4$ [10] with D_i for BZ(a)PYthat was measured as a function of pressure by Dymond and Woolf [17]. The results are also listed in Table 5. The values of f_i in Eq. (5) determined from the plot of D_i against $1/\eta$ are 5.56 ± 0.01 , 4.92 ± 0.03 and 6.93 ± 0.01 for BZP, TPH and N, respectively; they are approximately in the range of 4–6 as predicted by the SE equation, but clearly depend on the compounds examined.

There are few reliable data of diffusion coefficient at 0.1 MPa as well as at high pressure to the author's knowledge. The values of D_i observed for BZP and N in *n*-hexane are $(2.86-2.91) \times 10^{-9}$ [28] and 3.6×10^{-9} m² s⁻¹ [17,29], respectively, at 25 °C and 0.1 MPa. One may evaluate the values of D_i empirically or semi-empirically; they are 2.4×10^{-9} , 2.7×10^{-9} and 3.3×10^{-9} m² s⁻¹ by the Wilke–Chang equation [30], and $(2.6-3.1) \times 10^{-9}$, $(2.9-3.4) \times 10^{-9}$ and $(3.3-4.2) \times 10^{-9}$ m² s⁻¹ by the Spernol–Wirtz equation [31,32] for TPH, BZP and N,

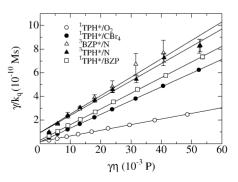


Fig. 3. Plots of γ/k_q against $\gamma\eta$ in *n*-hexane at 25 °C.

¹ In the previous work [6], we assumed to be $\gamma = 1$ in Eq. (6). The values of α^{ex} (and $k_{\text{bim}}^0/10^{10} \text{ M}^{-1} \text{ s}^{-1}$) obtained from the plots of $1/k_{\text{q}}$ and η are: 2840 ± 190 (1.4 ± 0.3), 2580 ± 100 (1.3 ± 0.2) and 2510 ± 20 (3.9 ± 0.2) for ³BZP*/N, ³TPH*/N and ¹TPH*/BZP, respectively; they are slightly smaller and larger than those in α^{ex} and in k_{bim}^0 , respectively, as seen in Table 3.

 $0.60\,\pm\,0.01$

P (MPa)	³ BZP*/N		³ TPH*/N		¹ TPH*/BZP	
	k _{diff}	$D_{\mathrm{D}^*} + D_{\mathrm{A}}$	$k_{ m diff}$	$D_{\mathrm{D}^*} + D_{\mathrm{A}}$	k _{diff}	$D_{\mathrm{D}^*} + D_{\mathrm{A}}$
0.1	2.18 ± 0.17	4.42 ± 0.34	2.33 ± 0.09	4.59 ± 0.18	2.58 ± 0.02	4.82 ± 0.03
50	1.36 ± 0.11	2.76 ± 0.21	1.45 ± 0.06	2.85 ± 0.12	1.61 ± 0.01	3.01 ± 0.02
100	0.99 ± 0.08	2.00 ± 0.15	1.05 ± 0.05	2.07 ± 0.09	1.17 ± 0.01	2.19 ± 0.02
150	0.76 ± 0.06	1.53 ± 0.12	0.81 ± 0.04	1.59 ± 0.07	0.89 ± 0.01	1.67 ± 0.01
200	0.60 ± 0.05	1.22 ± 0.10	0.64 ± 0.03	1.27 ± 0.05	0.71 ± 0.01	1.33 ± 0.01
250	0.48 ± 0.04	0.99 ± 0.08	0.52 ± 0.03	1.03 ± 0.05	0.58 ± 0.01	1.08 ± 0.01
300	0.40 ± 0.03	0.81 ± 0.07	0.43 ± 0.02	0.84 ± 0.04	0.47 ± 0.01	0.88 ± 0.01
350	0.33 ± 0.03	0.67 ± 0.06	0.35 ± 0.02	0.69 ± 0.03	0.39 ± 0.01	0.73 ± 0.01

Table 4

^a The radius, r_i, for BZP, TPH, N and n-hexane was estimated to be 0.345, 0.365, 0.309 and 3.01 nm, respectively, according to the method of Bondi [27].

 0.29 ± 0.02

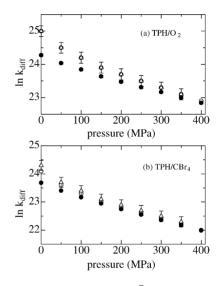
 0.57 ± 0.03

respectively. These values are comparable with those evaluated at 0.1 MPa in this work.

 0.55 ± 0.05

 0.27 ± 0.03

400


The values of k_{diff} for ¹TPH*/O₂ and ¹TPH*/CBr₄ can be determined by using α^{ex} (Table 3) and η (Table 1) according to Eq. (6) (k_{diff} (obs)), and also by using D_i for TPH, O₂ and CBr₄ (Table 4) according to Eq. (2) (k_{diff} (cal)). Fig. 4 compares the pressure dependence of k_{diff} (obs) with that of k_{diff} (cal). As seen in Fig. 4, k_{diff} (obs) is equal to k_{diff} (cal) for ¹TPH*/O₂ and ¹TPH*/CBr₄ within the experimental errors, indicating that D_i for TPH evaluated in this work gives a good estimation. Unfortunately, such a check of D_i for N and BZP was not made because N cannot be excited by the nitrogen laser used in this work and BZP is apparently nonfluorescent.

Finally, we refer to the similarity in the diffusion coefficient between the excited and ground states for relatively bulky molecules. Meyer and Nickel [33] measured the diffusion coefficient, D_i of the lowest triplet state of some aromatic hydrocarbons and found that D_i is estimated to be at most 10% smaller than that of molecules in the ground state. The evidence may support the assumption in this work that D_i for the excited state molecule is approximately equal to that for the ground state one.

Table 5 Values of D_i (×10⁻⁹ m² s⁻¹) for BZP, TPH, N, O₂ and CBr₄ in *n*-hexane and $25\,^{\circ}C$

und 20 0					
P (MPa)	BZP (this work)	TPH (this work)	N (this work)	O ₂ ^a	CBr ₄ [10]
0.1 50 100 150 200 250 300 350 400	$\begin{array}{c} 2.33 \pm 0.28 \\ 1.46 \pm 0.17 \\ 1.06 \pm 0.13 \\ 0.81 \pm 0.10 \\ 0.64 \pm 0.08 \\ 0.52 \pm 0.07 \\ 0.43 \pm 0.05 \\ 0.35 \pm 0.05 \\ 0.29 \pm 0.04 \end{array}$	$\begin{array}{c} 2.49 \pm 0.28 \\ 1.55 \pm 0.17 \\ 1.13 \pm 0.13 \\ 0.86 \pm 0.10 \\ 0.69 \pm 0.08 \\ 0.56 \pm 0.07 \\ 0.46 \pm 0.05 \\ 0.38 \pm 0.05 \\ 0.31 \pm 0.04 \end{array}$	$\begin{array}{c} 2.09 \pm 0.62 \\ 1.30 \pm 0.39 \\ 0.94 \pm 0.28 \\ 0.73 \pm 0.22 \\ 0.58 \pm 0.17 \\ 0.47 \pm 0.14 \\ 0.38 \pm 0.12 \\ 0.32 \pm 0.10 \\ 0.26 \pm 0.08 \end{array}$	15.6 9.50 6.88 5.25 4.18 3.40 2.79 2.32	4.41 2.54 1.83 1.38 1.09 0.89 0.75 0.63
	0.27 ± 0.01	0.01 ± 0.01	0.20 ± 0.00		

^a Mean values determined from the fluorescence quenching for benzo(a)pyrene/O₂ [10], 9,10-dimethylanthracene/O₂ [14] and pyrene/O₂ [14].

 0.32 ± 0.01

Fig. 4. Pressure dependence of k_{diff} (obs) (\bigcirc), k_{diff} (cal) (\triangle) and k_{q} (obs) (•) for ${}^{1}\text{TPH}^{*}/\text{O}_{2}$ (a) and ${}^{1}\text{TPH}^{*}/\text{CBr}_{4}$ (b) in *n*-hexane at 25 °C.

Appendix A

The radial distribution function at the closest approach distance, r_{M*O} (= $r_{M*} + r_O$) with hard spheres, $g(r_{M*O})$, is given by [26]

$$g(r_{M^*Q}) = \frac{1}{1-y} + \frac{3y}{(1-y)^2} \left(\frac{r_{red}}{r_S}\right) + \frac{2y^2}{(1-y)^3} \left(\frac{r_{red}}{r_S}\right)^2$$
(A.1)

where $r_{\rm red} = r_{\rm M^*} r_{\rm Q} / r_{\rm M^*Q}$, and y is the packing fraction, given in terms of the molar volume of solvent, $V_{\rm S}$, and the radius of hard sphere solvent, $r_{\rm S}$, by

$$y = \frac{4N_{\rm A}\pi r_{\rm S}^3}{3V_{\rm S}} \tag{A.2}$$

The values of r_{M^*} , r_Q , and r_S were estimated by the method of Bondi [27]; the radius, r_i, for BZP, TPH, N and n-hexane was 0.345, 0.365, 0.309 and 3.01 nm, respectively. The

values of $g(r_{M^*Q})$ were calculated by Eq. (A.1) by using r_i together with the data of the solvent density [21–23].

References

- N.J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA, 1978, p. 296.
- [2] J.B. Birks, Photophysics of Aromatic Molecules, Wiley/Interscience, New York, 1970, p. 518.
- [3] J. Saltiel, B.W. Atwater, Advances in Photochemistry, vol. 14, Wiley/Interscience, New York, 1987, p. 1.
- [4] S.A. Rice, in: C.H. Bamford, C.F.H. Tripper, R.G. Compton (Eds.), Comprehensive Chemical Kinetics. Diffusion-limited Reactions, vol. 25, Elsevier, Amsterdam, 1985.
- [5] J.B. Birks, Organic Molecular Photophysics, Wiley, New York, 1973, p. 403.
- [6] M. Okamoto, J. Phys. Chem. A 102 (1998) 4751.
- [7] M. Okamoto, F. Tanaka, S. Hirayama, J. Phys. Chem. A 102 (1998) 10703.
- [8] M. Okamoto, J. Phys. Chem. A 104 (2000) 5029.
- [9] M. Okamoto, J. Phys. Chem. A 104 (2000) 7518.
- [10] M. Okamoto, O. Wada, J. Photochem. Photobiol. A 138 (2001) 87.
- [11] M. Okamoto, O. Wada, F. Tanaka, S. Hirayama, J. Phys. Chem. A 105 (2001) 566.
- [12] M. Okamoto, Phys. Chem. Chem. Phys. 3 (2001) 3696.
- [13] M. Okamoto, F. Tanaka, J. Phys. Chem. A 106 (2002) 3982.
- [14] M. Okamoto, Int. J. Thermophys. 23 (2002) 421.

- [15] M. Okamoto, H. Nagashima, F. Tanaka, Phys. Chem. Chem. Phys. 4 (2002) 5627–5633.
- [16] M. Okamoto, T. Teratsuji, Y. Tazuke, S. Hirayama, J. Phys. Chem. A 105 (2001) 4574.
- [17] J.H. Dymond, L.A. Woolf, J. Chem. Soc., Faraday Trans. I 78 (1982) 991.
- [18] M. Okamoto, H. Teranishi, J. Phys. Chem. 88 (1984) 5644.
- [19] S.L. Murrov, Handbook of Photochemistry, Marcel Dekker, New York, 1973.
- [20] IUPAC Analytical Chemistry Division, Commission on Solubility Data, in: R. Battino (Ed.), Oxygen and Ozone, Solubility Data Series, vol. 7, Pergamon Press, Oxford, 1981.
- [21] P.W. Bridgman, Proc. Am. Acad. Arts Sci. 61 (1926) 57.
- [22] D.W. Brazier, G.R. Freeman, Can. J. Chem. 47 (1969) 893.
- [23] C.M.B.P. Oliveira, W.A. Wakeham, Int. J. Thermophys. 13 (1992) 773.
- [24] S. Hirayama, H. Yasuda, A.D. Scully, M. Okamoto, J. Phys. Chem. 98 (1994) 4609, and references therein.
- [25] J. Saltiel, O.T. Shannon, O.C. Zafiriou, K. Uriarte, J. Am. Chem. Soc. 102 (1980) 6799.
- [26] Y. Yoshimura, M. Nakahara, J. Chem. Phys. 81 (1984) 4080.
- [27] A. Bondi, J. Phys. Chem. 68 (1964) 441.
- [28] R.L. Donkers, D.G. Leaist, J. Phys. Chem. B 101 (1997) 304.
- [29] J.H. Dymond, J. Phys. Chem. 85 (1981) 3291.
- [30] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, p. 598.
- [31] A. Spernol, K. Wirtz, Z. Naturforsch. A 8 (1953) 522.
- [32] A. Gierer, K. Wirtz, Z. Naturforsch. A 8 (1953) 532.
- [33] E.G. Meyer, B. Nickel, Z. Naturforsch. A 35 (1980) 503.